

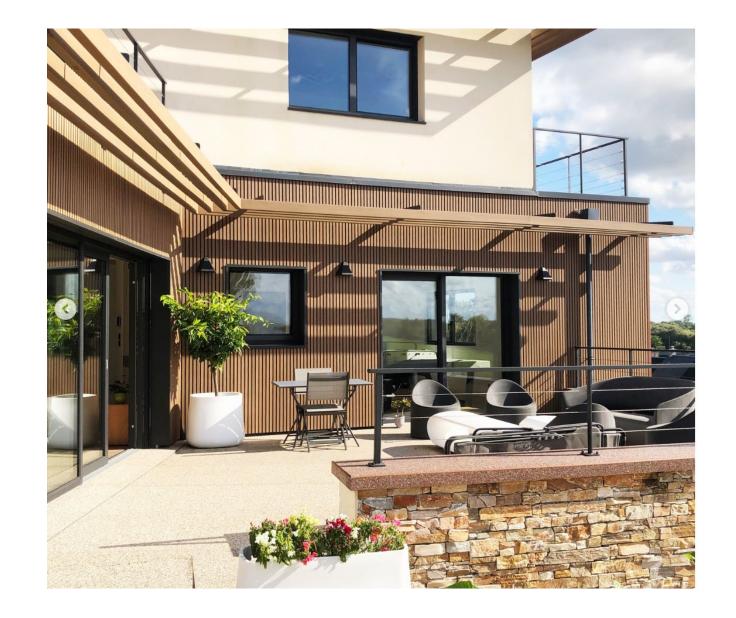
Les caractéristiques principales

3 Niveaux

11,20m de Hauteur

320m² dont 235 m² hab

Piscine intérieure

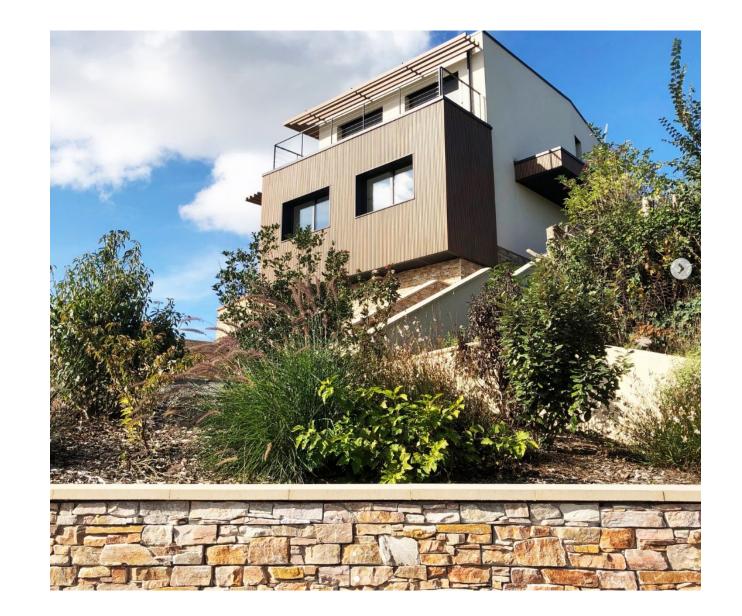

Les critères d'un bâtiment passif

Besoin de chauffage < 15 KWh EF/m².An Garantie des consommations énergétiques

Etanchéité à l'air < 0,60 vol/h à n50

Garantie de la qualité de l'air intérieur

Consommation tous usages < 120 kwhEP/m².an Garantie de la pérennité des parois



Choix matériaux

Sous sol : Agglos bancheurs

Elévation en ossature bois

Plancher béton Sous-Sol / RDC Plancher bois RDC / R+1

Choix matériels

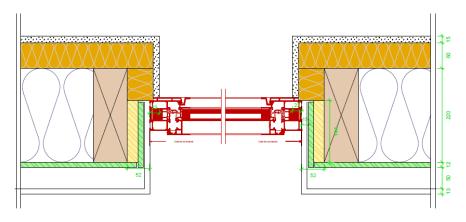
VMC Double Flux

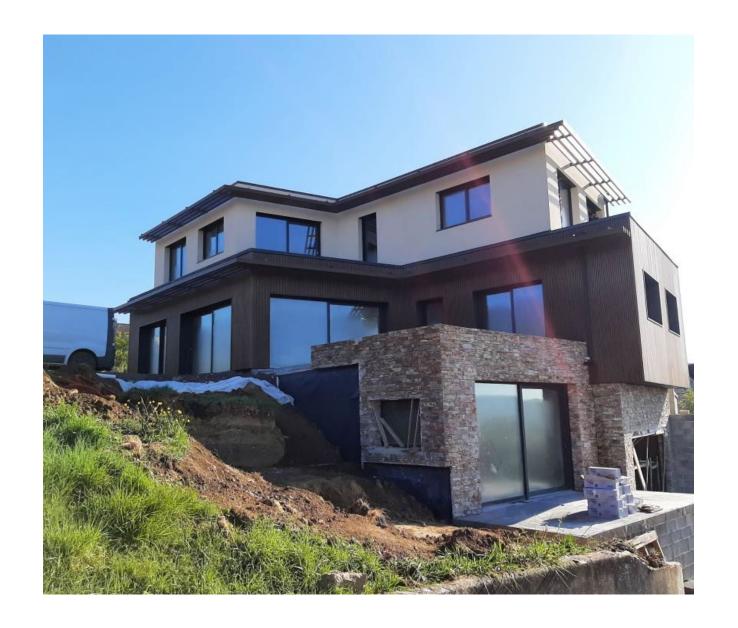
Ballon électrique

Panneaux Photovoltaïques Ballon thermodynamique

VMC Double Flux

BATIRBIO AéroVarmo 450 Rendement > 90% Consommation 70 Wh/m3 Double By-pass Puit canadien Régulation DeltaTero


Panneaux Photovoltaïques

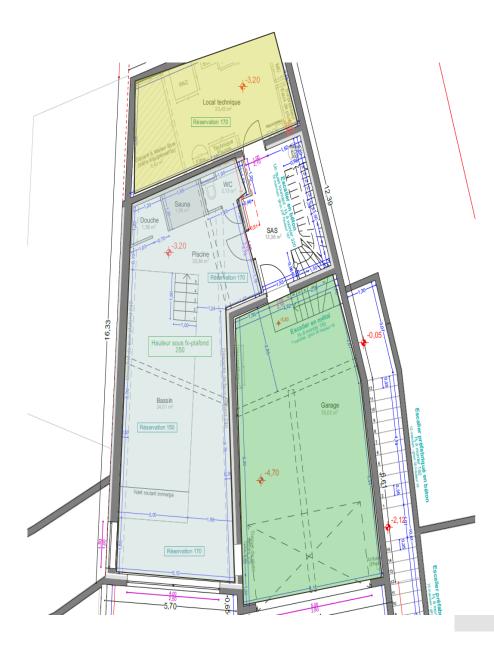

SOLARWATT VISION 20 Capteurs 300 Wc

Menuiseries FINSTRAL

FIN Project Classic Line

Conception des planchers bas

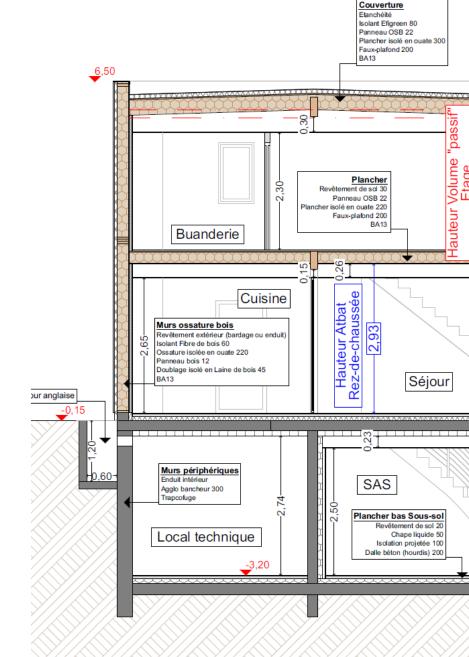
Plancher bas sur Piscine


- Carrelage
- Isolant sous chape Mousse PU
- Dalle béton
- Isolant sous dalle mousse PU

Plancher bas sur Garage

- Carrelage
- Isolant sous chape Mousse PU
- Dalle béton
- Isolant sous dalle mousse PU

Plancher bas sur Chaufferie


- Carrelage
- Isolant sous chape Mousse PU
- Dalle béton
- Isolant sous dalle mousse PU

Conception des parois

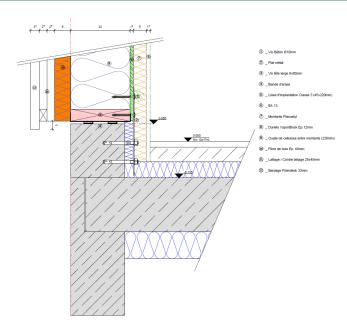
Murs

- Parement BA13 sur ossature
- Laine de bois 45mm
- Panneaux contreventement Durelis / étanchéité
- Ouate de cellulose 220mm dans l'ossature bois STEICO
- Panneau isolant Pare-Pluie 6omm laine de bois STEICO Intégral
- Lattage / bardage bois claire voie

Conception des planchers hauts

Plancher haut sur Terrasse - RDC

- Terrasse bois sur plot
- EPDM
- Isolant PU 80mm
- Panneau OSB 22mm
- Ouate de cellulose 220mm entre ossature bois
- Panneau DFP
- Plénum / vide technique 200mm
- Parement BA13 sur ossature


Plancher haut - Toiture

- EPDM
- Isolant PU 80mm
- Panneau OSB 22mm
- Ouate de cellulose 300mm entre ossature bois
- Panneau Durelis Vaporblok
- Plénum / vide technique 200mm
- Parement BA13 sur ossature

Gestion des ponts thermiques

- Plancher bas sur LNC Garage et
- Plancher bas sur Piscine
- Plancher intermédiaire
- Plancher haut Attique
- Plancher haut Toiture Terrasse
- Plancher haut Couverture
- Angle sortant / Rentrant
- Refends
- Mise en œuvre des menuiseries

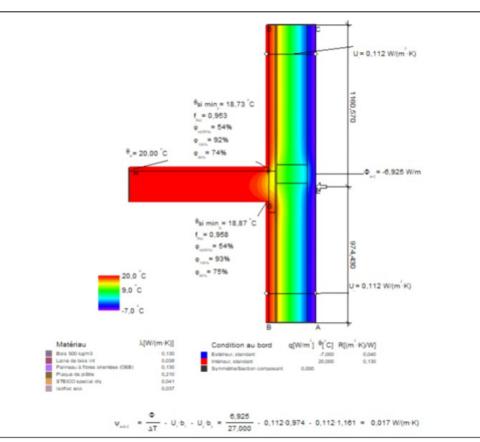
REPERE 5 - LIAISON PLANCHER INTERMEDIAIRE RDC / R+1

DESCRIPTION Plancher intermédiaire :

- Revêtement de sol de 30mm
- Panneau OSB de 22mm
- Ossature bois avec isolant en ouate de cellulose de 220mm \(\lambda = 0.037 \) W/m.K
- Plénum de 200mm / Faux plafonds
- Parement intérieur en BA13

Murs Ossature Bois:

- Parement intérieur BA13 sur ossature secondaire
- Isolant intérieur de 45mm en laine de bois à = 0.038 W/m.K
- Panneau OSB 12mm
- Ossature bois avec isolant en ouate de cellulose de 220mm \(\lambda = 0.037 \) W/m.K
- Panneau isolant extérieur en fibre de bois de 60mm \u03b4 = 0.041 W/m.K
- Tasseaux verticaux 22 x 45mm / Lame d'air
- Bardage extérieur



Valeur Psi = Localisation :

linéaire pris en compte

28,67 ml

Plancher intermédiaire RDC / R+1

Résultat PHPP

Valeurs rapportées à la surface de référence énergétique				
Surface de référence énergétique A _{RE} :	235,3 Méthode utilisée:	m ² Méthode mensuelle	Contification standard possifi	Critères respectés ?
	Methode utilisee:	Methode mensuelle	Certification standard passif:	Toopeotoo .
Besoin de chaleur de chauffage annuel:	6,21	kWh/(m²a)	15 kWh/(m²a)	oui
Résultat du test d'infiltrométrie:	0,57	h ⁻¹	0,6 h ⁻¹	oui
Besoin en énergie primaire (ECS, chauffage, refroidissement, électricité auxiliaire et domestique):	101	kWh/(m²a)	120 kWh/(m ² a)	oui
Besoin en énergie primaire (ECS, chauffage et électricité auxiliaire):	58	kWh/(m²a)		
économisée par la production d'électricité	31	kWh/(m²a)		
Puissance de chauffage:	8	W/m ²		
Surchauffe estivale:	0	%	sup. à 25 °C	
Besoin de refroidissement annuel:		kWh/(m²a)	15 kWh/(m²a)	
Puissance de refroidissement:	3	W/m ²		

Détermination du taux de renouvellement d'air à 50 Pa - n₅₀

	Pressurisation	
Débit de fuite à 50 Pa - Q ₅₀	364 m3/h	
intervalle de confiance à 95% - Q _{50 max}	369 m3/h	1,2%
intervalle de confiance à 95% - Q _{50 min}	360 m3/h	-1,1%
Taux de renouvellement d'air à 50 Pa - n ₅₀	0,56 vol/h	
intervalle de confiance à 95% - n _{50 max}	0,58 1/h	3,2%
intervalle de confiance à 95% - n _{50 min}	0,55 1/h	-3,2%

Débit de fuite à 50 Pa - Q₅₀ - m³/h

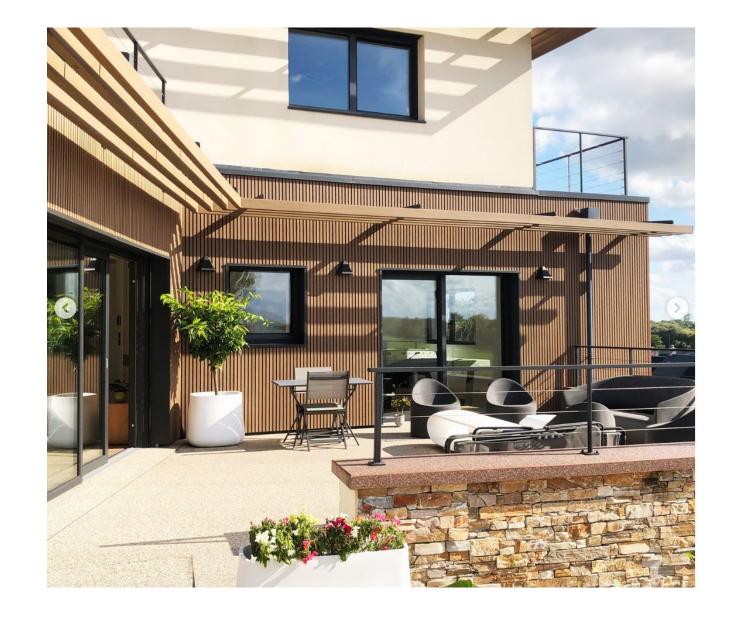
Débit de fuite d'air à travers l'enveloppe du bâtiment à la pression différentielle de 50 Pa.

Taux de renouvellement d'air à 50 Pa - n₅₀ - vol/h

Débit de fuite d'air rapporté au volume intérieur pour une différence de pression de 50 Pa à travers l'enveloppe du bâtiment.

Les piliers de la réussite

Travailler intelligemment


Suivre le protocole

Choix des entreprises

Anticiper et concevoir

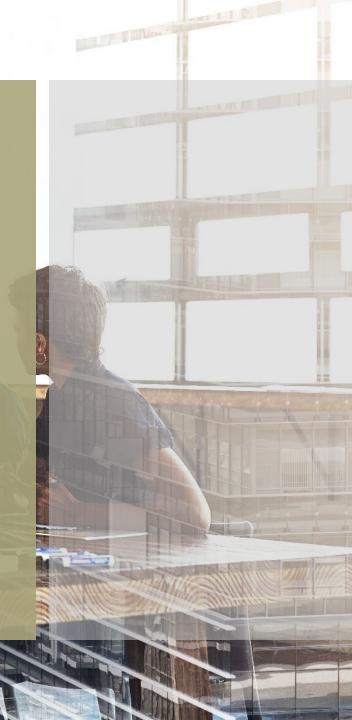
Confiance

Garantie de résultats

CAGNIARD Maxime

BET ACTEN ENERGIE

21 Rue de la Maison Blanche 14112 Periers sur le Dan- France


T +33 0231530223

SPITZ Emmanuel

Finstral France Sarl 1 rue de Krebsbach 68230 Wihr-au-Val - France

T +33 0389 717100

